Emmy, the Algebra System: Differential Geometry Chapter Two
Functional Differential Geometry: Chapter 2
2 Manifolds
A manifold is a generalization of our idea of a smooth surface embedded in Euclidean space.
(define R2 (make-manifold Rn 2))Concerning the expression the (define U (patch ’origin R2)), “We can avoid explicitly naming the patch” as stated in footnote 6, p13 of the FDG book
2.1 Coordinate Functions
(define R2-rect (coordinate-system-at R2 :rectangular :origin))(define R2-polar (coordinate-system-at R2 :polar-cylindrical :origin))(define R2-rect-chi (chart R2-rect))(define R2-rect-chi-inverse (point R2-rect))(define R2-polar-chi (chart R2-polar))(define R2-polar-chi-inverse (point R2-polar))(print-expression
((compose R2-polar-chi R2-rect-chi-inverse) (up 'x0 'y0)))(up (sqrt (+ (expt x0 2) (expt y0 2))) (atan y0 x0))(print-expression
((compose R2-rect-chi R2-polar-chi-inverse) (up 'r0 'theta0)))(up (* r0 (cos theta0)) (* r0 (sin theta0)))(print-expression
((D (compose R2-rect-chi R2-polar-chi-inverse)) (up 'r0 'theta0)))(down (up (cos theta0) (sin theta0)) (up (* r0 (- (sin theta0))) (* r0 (cos theta0))))2.2 Manifold Functions
(define R2->R '(-> (UP Real Real) Real))(define f
(compose (literal-function 'f-rect R2->R) R2-rect-chi))Footnote 8, p16
(define f-shorthand
(literal-manifold-function 'f-rect R2-rect))(define R2-rect-point (R2-rect-chi-inverse (up 'x0 'y0)))(define corresponding-polar-point
(R2-polar-chi-inverse
(up (sqrt (+ (square 'x0) (square 'y0)))
(atan 'y0 'x0))))(print-expression
(f R2-rect-point))(f-rect (up x0 y0))(print-expression
(f corresponding-polar-point))(f-rect (up x0 y0))(define-coordinates (up x y) R2-rect)#'mentat-collective.emmy.fdg-ch02/dy(define-coordinates (up r theta) R2-polar)#'mentat-collective.emmy.fdg-ch02/dtheta(x (R2-rect-chi-inverse (up 'x0 'y0)))x0(x (R2-polar-chi-inverse (up 'r0 'theta0)))(* r0 (cos theta0))(r (R2-polar-chi-inverse (up 'r0 'theta0)))r0(r (R2-rect-chi-inverse (up 'x0 'y0)))(sqrt (+ (expt x0 2) (expt y0 2)))(theta (R2-rect-chi-inverse (up 'x0 'y0)))(atan y0 x0)(define h (+ (* x (square r)) (cube y)))(h R2-rect-point)(+ (* x0 (+ (expt x0 2) (expt y0 2))) (expt y0 3))(h (R2-polar-chi-inverse (up 'r0 'theta0)))(+ (* r0 (cos theta0) (expt r0 2)) (expt (* r0 (sin theta0)) 3))(define-coordinates (up r theta) R2-polar)#'mentat-collective.emmy.fdg-ch02/dtheta((- r (* 2 'a (+ 1 (cos theta)))) ((point R2-rect) (up 'x 'y)))(- (sqrt (+ (expt x 2) (expt y 2))) (* 2 a (+ 1 (cos (atan y x)))))((compose
(chart S2-spherical)
(point S2-Riemann)
(chart R2-rect)
(point R2-polar))
(up 'rho 'theta))
NoteOUT
2026-01-29T15:03:22.807Z runnervmkj6or WARN [emmy.util.logic:22] - Assuming (positive? (/ (* 2 rho) (+ (* (expt rho 2) (expt (cos theta) 2)) (* (expt rho 2) (expt (sin theta) 2)) 1))) in aggressive-atan-2
2026-01-29T15:03:22.812Z runnervmkj6or WARN [emmy.util.logic:22] - Assuming (= (atan (sin theta) (cos theta)) theta) in atan-sin-cos
(up (acos (/ (+ (expt rho 2) -1) (+ (expt rho 2) 1))) theta)requires emmy.util.def/careful-def for define-coordinates
(repl/scittle-sidebar)